
Chapter 1

The Power of Grids - Computing the
Minimum Disk Containing k Points

The Peace of Olivia. How sweat and peaceful it sounds! There the great powers noticed for the first time that the
land of the Poles lends itself admirably to partition.

– The tin drum, Gunter Grass

In this chapter, we are going to discuss two basic geometric algorithms. The first one, computes the
closest pair among a set of n points in linear time. This is a beautiful and surprising result that exposes the
computational power of using grids for geometric computation. Next, we discuss a simple algorithm for
approximating the smallest enclosing ball that contains k points of the input. This at first looks like a bizarre
problem, but turns out to be a key ingredient to our later discussion.

1.1 Preliminaries

For a real positive number r and a point p = (x, y) in IR2, define Gr(p) to be the grid point (bx/rc r, by/rc r).
We call r the width of the grid Gr. Observe that Gr partitions the plane into square regions, which we call
grid cells. Formally, for any i, j 2 Z, the intersection of the half-planes x � ri, x < r(i + 1), y � r j and
y < r(j+1) is said to be a grid cell. Further we define a grid cluster as a block of 3⇥3 contiguous grid cells.

Note, that every grid cell C of Gr, has a unique ID; indeed, let p = (x, y) be any point in C, and consider
the pair of integer numbers idC = id(p) = (bx/rc , by/rc). Clearly, only points inside C are going to be
mapped to idC . This is very useful, since we store a set P of points inside a grid e�ciently. Indeed, given a
point p, compute its id(p). We associate with each unique id a data-structure that stores all the points falling
into this grid cell (of course, we do not maintain such data-structures for grid cells which are empty). So,
once we computed id(p), we fetch the data structure associated with this cell, by using hashing. Namely,
we store pointers to all those data-structures in a hash table, where each such data-structure is indexed by its
unique id. Since the ids are integer numbers, we can do the hashing in constant time.

Assumption 1.1.1 Throughout the discourse, we assume that every hashing operation takes (worst case)
constant time. This is quite a reasonable assumption when true randomness is available (using for example
perfect hashing [CLRS01]).

For a point set P, and parameter r, the partition of P into subsets by the grid Gr, is denoted by Gr(P).
More formally, two points p, q 2 P belong to the same set in the partition Gr(P), if both points are being
mapped to the same grid point or equivalently belong to the same grid cell.

13

1.2 Closest Pair

We are interested in solving the following problem:

Problem 1.2.1 Given a set P of n points in the plane, find the pair of points closest to each other. Formally,
return the pair of points realizing CP(P) = minp,q2P kp � qk.

Lemma 1.2.2 Given a set P of n points in the plane, and a distance r, one can verify in linear time, whether
CP(P) < r, CP(P) = r, or CP(P) > r.

Proof: Indeed, store the points of P in the grid Gr. For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point p takes constant time. Indeed, compute id(p), check if
id(p) already appears in the hash table, if not, create a new linked list for the cell with this ID number, and
store p in it. If a data-structure already exist for id(p), just add p to it.

This takes O(n) time. Now, if any grid cell in Gr(P) contains more than, say, 9 points of p, then it must
be that the CP(P) < r. Indeed, consider a cell C containing more than nine points of P, and partition C into
3 ⇥ 3 equal squares. Clearly, one of those squares must contain two points of P, and let C0 be this square.
Clearly, the diameter of C0 = diam(C)/3 =

p
r2 + r2/3 < r. Thus, the two (or more) points of P in C0 are at

distance smaller than r from each other.
Thus, when we insert a point p, we can fetch all the points of P that were already inserted, in the cell of

p, and the 8 adjacent cells. All those cells, must contain at most 9 points of P (otherwise, we would already
have stopped since the CP(·) of inserted points, is smaller than r). Let S be the set of all those points, and
observe that |S | 9 · 9 = O(1). Thus, we can compute by brute force the closest point to p in S . This takes
O(1) time. If d(p, S) < r, we stop, otherwise, we continue to the next point.

Overall, this takes O(n) time. As for correctness, first observe that if CP(P) > r then the algorithm
would never make a mistake, since it returns ‘CP(P) < r’ only after finding a pair of points of P with
distance smaller than r. Thus, assume that p, q are the pair of points of P realizing the closest pair, and
kpqk = CP(P) < r. Clearly, when the later of them, say p, is being inserted, the set S would contain q, and
as such the algorithm would stop and return ‘CP(P) < r’.

Lemma 1.2.2 provides a natural way of computing CP(P). Indeed, permute the points of P in arbitrary
fashion, and let P = hp1, . . . , pni. Next, let ri = CP({p1, . . . , pi}). We can check if ri+1 < ri, by just calling
the algorithm for Lemma 1.2.2 on Pi+1 and ri. In fact, if ri+1 < ri, the algorithm of Lemma 1.2.2, would give
us back the distance ri+1 (with the other point realizing this distance).

So, consider the “good” case, where ri = ri�1; that is, the length of the shortest pair does not change
when pi is inserted. In this case, we do not need to rebuild the data structure of Lemma 1.2.2 for the ith
point. We can just reuse it from the previous iteration by inserting pi into it. Thus, inserting a single point
takes constant time, as long as the closest pair does not change.

Things become problematic when ri < ri�1, because then we need to rebuild the grid data structure, and
reinsert all the points of Pi = hp1, . . . , pi+1i into the new grid Gri(Pi). This takes O(i) time.

Specifically, if the closest pair distance, in the sequence r1, . . . , rn, changes only k times, then the running
time of our algorithm would be O(nk). In fact, we can do even better.

Theorem 1.2.3 For set P of n points in the plane, one can compute the closest pair of P in expected linear
time.

Proof: Pick a random permutation of the points of P, let hp1, . . . , pni be this permutation. Let r2 =

kp1 p2k, and start inserting the points into the data structure of Lemma 1.2.2. In the ith iteration, if ri = ri�1,
then this insertion takes constant time. If ri < ri�1, then we rebuild the grid and reinsert the points. Namely,
we recompute Gri(Pi).

14

To analyze the running time of this algorithm, let Xi be the indicator variable which is 1 if ri , ri�1, and
0 otherwise. Clearly, the running time is proportional to

R = 1 +
nX

i=2

(1 + Xi · i) .

Thus, the expected running time is

E[R] = E
2
6666641 +

nX

i=2

(1 + Xi · i)
3
777775 = n +

nX

i=2

(E[Xi] · i) = n +
nX

i=2

i · Pr[Xi = 1] ,

by linearity of expectation and since for indicator variable Xi, we have E[Xi] = Pr[Xi = 1].
Thus, we need to bound Pr[Xi = 1] = Pr[ri < ri�1]. To bound this quantity, fix the points of Pi, and

randomly permute them. A point q 2 Pi is called critical, if CP(Pi \ {q}) > CP(Pi). If there are no critical
points, then ri�1 = ri and then Pr[Xi = 1] = 0. If there is one critical point, then Pr[Xi = 1] = 1/i, as this is
the probability that this critical point, would be the last point in the random permutation of Pi.

If there are two critical points, and let p, q be this unique pair of points of Pi realizing CP(Pi). The
quantity ri is smaller than ri�1, one if either p or q are pi. But the probability for that is 2/i (i.e., the
probability in a random permutation of i objects, that one of two marked objects would be the last element
in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points that
realizing the closest distance, than if there is a third critical point r, then CP(Pi \ {r}) = kpqk, and r is not
critical.

We conclude that

E[R] = n +
nX

i=2

i · Pr[Xi = 1] n +
nX

i=2

i ·
2
i
 3n,

and the expected running time is O(E[R]) = O(n).

Theorem 1.2.3 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers are
all distinct) can be solved in linear time. However, there is a lower bound of ⌦(n log n) on uniqueness, using
the comparison model. This reality dysfunction can be easily explained once one realizes that the computa-
tion of Theorem 1.2.3 is considerably stronger, using hashing, randomization, and the floor function.

1.3 A Slow 2-Approximation Algorithm for the k-Enclosing Disk

For a circle D, we denote by radius(D) the radius of D.
Let Dopt(P, k) be a disk of minimum radius which contains k points of P, and let ropt(P, k) denote the

radius of Dopt(P, k).
Let P be a set of n points in the plane. Compute a set of m = O(n/k) horizontal lines h1, . . . , hm such

that between two consecutive horizontal lines, there are at most k/4 points of P in the strip they define. This
can be easily done in O(n log(n/k)) time using deterministic median selection together with recursion.≠

Similarly, compute a set of vertical lines v1, . . . , vm, such that between two consecutive lines, there are at
most k/4 points of P.

≠Indeed, compute the median in the x-order of the points of P, split P into two sets, and recurse on each set, till the number of
points in a subproblem is of size k/4. We have T (n) = O(n) + 2T (n/2), and the recursion stops for n k/4. Thus, the recursion
tree has depth O(log(n/k)), which implies running time O(n log(n/k)).

15

